全球知识产权大型服务机构
10年专注全球知识产权服务
- 全国24小时热线:
- 400-1688-019
2019年10月9日,瑞典皇家科学院将2019年诺贝尔化学奖授予美国的John B. Goodenough、英国的Stanley Whittingham以及日本的Akira Yoshino,以表彰他们在锂离子电池研究方面的突出贡献。
2019年的诺贝尔化学奖实至名归,锂离子电池对现代社会的影响深远,从移动电子到电动汽车都广泛应用。
但是锂离子电池的研究道路却充满了波折,这里面掺杂着专利战、商业间谍、技术产业化竞争等复杂的故事情节。
最先做出锂离子电池的是英国的Stanley Whittingham,他在上世纪70年代开始申请了锂离子电池方面的一系列专利。
US-4007055-A | Preparation of stoichiometric titanium disulfide |
US-4040917-A | Preparation of intercalated chalcogenides |
US-4009052-A | Chalcogenide battery |
US-4049879-A | Intercalated transition metal phosphorus trisulfides |
US-4049887-A | Electrochemical cells with cathode-active materials of layered compounds |
CA-1094777-A | Preparation of stoichiometric titanium disulfide |
US-4086403-A | Alkali metal/niobium triselenide cell having a dioxolane-based electrolyte |
CA-1036535-A | Preparation of intercalated chalcogenides |
US-4143213-A | Cells having cathodes containing chalcogenide compounds of the formula Ma FeXb and species thereof exhibiting alkali metal incorporation |
US-4139682-A | Cells having cathodes derived from ammonium-copper-molybdenum-chalcogen compounds |
US-4144384-A | Cells having cathodes with vanadium-chalcogen-containing compounds |
US-4166160-A | Cells having cathodes derived from ammonium-molybdenum-chalcogen compounds |
US-4201839-A | Cell containing an alkali metal anode, a solid cathode, and a closoborane and/or closocarborane electrolyte |
US-4243624-A | Method of making cathodes derived from ammonium-metal-chalcogen compounds |
US-4233375-A | High energy density plural chalcogenide cathode-containing cell |
CA-1099333-A | Electro chemical cell with titanium disulfide cathode |
US-4339424-A | Method of preparing W or Mo metal oxides |
US-5514490-A | Secondary lithium battery using a new layered anode material |
US-2016365577-A1 | Vanadyl phosphates as high energy density cathode materials for rechargeable sodium battery |
US-2017373310-A1 | Kvopo4 cathode for sodium ion batteries |
US-2019273257-A1 | Epsilon-VOPO4 CATHODE FOR LITHIUM ION BATTERIES |
Stanley Whittingham的专利
从70年代开始,Stanley Whittingham在锂离子领域申请了几十件专利,最近的一件专利申请还是在2019年公开的,可见其对锂离子电池研究的激情。
但是可惜的是,Stanley Whittingham最初的锂离子电池存在诸多问题,无法商业化。
在Stanley Whittingham的基础上,当时还在牛津大学工作的美国科学家Goodenough发现了一种更好的材料氧化钴锂,这一发现直接促使了日本企业将锂电池正式商业化。但离奇的是,当时的牛津大学竟然未对该成果申请专利。日本企业相当于白白使用了这一成果。Goodenough一直在几十年后还对牛津大学的决定懊恼不已。牛津大学的这一决定损失了至少几亿美元的专利许可费。此后,Goodenough在锂电池领域不断改进,最终发明了磷酸铁锂电池,这也是如今电动汽车领域使用最普遍的电池。但这一次Goodenough又在专利上跌了跟头,日本电讯公司将一名员工Osada送到他的实验室当访问研究员,Goodenough后来在法庭上说他是出于友谊答应的,没想到回到日本后Osada偷偷地将相关技术申请了专利,导致Goodenough大为恼火,在美国起诉日本企业窃取知识产权,索赔5亿美元。但是在诉讼进行的过程中,日本企业在锂电池方面早已实现了腾飞。
Goodenough一直90多岁还在做研究,最近的一件专利是在2018年公开了,95岁还在申请专利。他在锂电池方面申请过20多个专利,当然最关键的发明都没有得到多很好的保护,否则Goodenough早已是亿万富豪了。
US-4049891-A | Compositions for fast alkali-metal-ion transport |
US-4302518-A | Electrochemical cell with new fast ion conductors |
US-4507371-A | Solid state cell wherein an anode, solid electrolyte and cathode each comprise a cubic-close-packed framework structure |
US-5910382-A | Cathode materials for secondary (rechargeable) lithium batteries |
DE-6020470-T1 | Cathode material for secondary (rechargeable) lithium batteries |
US-6514640-B1 | Cathode materials for secondary (rechargeable) lithium batteries |
US-6221812-B1 | Jc in high magnetic field of bi-layer and multi-layer structures for high temperature superconductive materials |
WO-2006130766-A2 | Cathodes for rechargeable lithium-ion batteries |
US-2012052401-A1 | Niobium Oxide Compositions and Methods for Using Same |
US-2014080019-A1 | MONOCLINIC Sr1-xAxSi1-yGeyO3-0.5x, WHEREIN A IS K or Na, OXIDE ION CONDUCTOR |
US-2015050578-A1 | Oxide-ion conductors and related composites and devices |
US-2016351904-A1 | Cathode additive for rechargeable lithium batteries |
US-9890048-B2 | Water solvated glass/amorphous solid ionic conductors |
US-2017005327-A1 | Cathode additive for rechargeable sodium batteries |
US-10236513-B2 | Alkali-metal batteries with a dendrite-free anode interfacing an organic liquid electrolyte |
US-2018287222-A1 | Self-charging and/or self-cycling electrochemical cells |
WO-2018013485-A1 | Self-charging and/or self-cycling electrochemical cells |
US-10381683-B2 | Metal plating-based electrical energy storage cell |
US-2019115162-A1 | Heat energy-powered electrochemical cells |
US-2018287150-A1 | Electrochemical cells with a high voltage cathode |
Goodenough的专利申请
但从知识产权保护方面来说,来自日本的科学家Akira Yoshino是最成功的,他的技术直接推动了锂电池的商业化。Akira Yoshino在锂电池领域一共申请了50多件专利,也为此获得了巨大的商业利益。
US-4226908-A | Water repellent inorganic foam and method for producing the same |
US-4207113-A | Inorganic foam and preparation thereof |
CA-1103405-A | Inorganic foam and preparation thereof |
JP-S60127669-A | Secondary battery |
JP-S60127309-A | Stabilization of n type polyacetylene |
JP-S60127307-A | Electrochemical stabilization of n type polyacetylene |
JP-S60262351-A | Composite negative electrode of secondary battery |
US-4634636-A | Polyacetylene composite |
JP-S61285678-A | Electrochemical method for stabilizing n-type polyacetylene |
EP-0205856-B1 | Secondary battery |
JP-S633393-A | Card processing system with display function |
JP-H0422066-A | Nonaqueous secondary battery |
JP-H0574453-A | Organic secondary battery |
JP-H0574452-A | New secondary battery |
JP-H0574436-A | Separator for battery |
JP-H0574461-A | Secondary battery negative electrode |
JP-H0574442-A | Battery separator |
JP-H0574494-A | Nonaqueous secondary battery |
JP-H0574493-A | Secondary battery equipped with safety element |
JP-H0574455-A | Organic electrolyte battery |
JP-H0574485-A | Nonaqueous electrolyte secondary battery |
JP-H0585741-A | Method for firing multiple oxide |
JP-H0594822-A | Battery |
JP-H0620672-A | Separator for nonaqueous battery |
WO-9306628-A1 | Secondary cell |
JP-H06111805-A | Positive electrode pin for battery |
JP-H06111804-A | Resin sealed positive electrode terminal |
JP-H06111803-A | Positive electrode terminal for battery |
JP-H06111802-A | Positive electrode pin structure |
JP-H0750159-A | Battery with new rupture |
JP-H0750160-A | Positive electrode pin |
AU-655710-B2 | .econdary battery |
TW-211084-B | Secondary battery |
JP-H07176302-A | Secondary battery |
JP-H07176303-A | Manufacture of secondary battery electrode |
JP-H08106886-A | Batteries |
JP-H11176996-A | Coated electronic circuit |
JP-2001357724-A | Anti-corrosive overhead wire |
JP-2002020777-A | Grease and aerial power transmission line obtained by using the same |
JP-2004095338-A | Corrosion-protected wire |
JP-2004095337-A | Corrosion proof electric supply cable |
JP-2006324554-A | Fluorine-containing organic sulfonyl imido salt electrolyte, and electrolytic solution and electrochemical component using same |
JP-2006324167-A | Unsymmetrical organic sulfonylimide salt electrolyte, electrolyte solution and electrochemical element using the same |
CA-2662423-C | Polymer electrolyte comprising a ketonic carbonyl group and electrochemical device comprising said electrolyte |
EP-2063436-B1 | Polymeric electrolyte, method for production thereof, and electrochemical element |
JP-2009087875-A | High heat radiation electrochemical element and power supply device |
US-9893378-B2 | Non-aqueous electrolyte solution and non-aqueous secondary battery |
JP-2013199176-A | Liquid-gas transport vehicle |
JP-2015065050-A | Nonaqueous electrolytic solution, and nonaqueous secondary battery |
JP-2015072805-A | Nonaqueous secondary battery |
JP-2017152085-A | Nonaqueous electrolytic solution and nonaqueous secondary battery |
EP-3467930-A1 | Nonaqueous electrolyte and nonaqueous secondary battery |
EP-3279996-B1 | Nonaqueous electrolyte and nonaqueous secondary battery |
Akira Yoshino的锂电池专利申请
2019年诺贝尔化学奖也反映了各国的研发思路。欧美更注重原始的创新,日本的基础研究更靠近产业实践。日本企业在锂电池的产业中获得了最大的利益。